Wednesday, September 8, 2010

MILK: a Food Source for Humans (1)

milk_human_food
MILK: a  Food Source for Humans (1) - Composition and Structure: Overview.  The role of milk in nature is to nourish and provide immunological protection for the mammalian young. Milk has been a food source for humans since prehistoric times; from human, goat, buffalo, sheep, yak, to the focus of this section - domesticated cow milk (genus Bos). Milk and honey are the only articles of diet whose sole function in nature is food. It is not surprising, therefore, that the nutritional value of milk is high. Milk is also a very complex food with over 100,000 different molecular species found. There are many factors that can affect milk composition such as breed variations (see introduction, cow to cow variations, herd to herd variations - including management and feed considerations, seasonal variations, and geographic variations. With all this in mind, only an approximate composition of milk can be given:
  • 87.3% water (range of 85.5% - 88.7%)
  • 3.9 % milkfat (range of 2.4% - 5.5%)
  • 8.8% solids-not-fat (range of 7.9 - 10.0%):
    • protein 3.25% (3/4 casein)
    • lactose 4.6%
    • minerals 0.65% - Ca, P, citrate, Mg, K, Na, Zn, Cl, Fe, Cu, sulfate, bicarbonate, many others
    • acids 0.18% - citrate, formate, acetate, lactate, oxalate
    • enzymes - peroxidase, catalase, phosphatase, lipase
    • gases - oxygen, nitrogen
    • vitamins - A, C, D, thiamine, riboflavin, others
The following terms are used to describe milk fractions:
  • Plasma = milk - fat (skim milk)
  • Serum = plasma - casein micelles (whey)
  • solids-not-fat (SNF) = proteins, lactose, minerals, acids, enzymes, vitamins
  • Total Milk Solids = fat + SNF
Not only is the composition important in determining the properties of milk, but the physical structure must also be examined. Due to its role in nature, milk is in a liquid form. This may seem curious if one takes into consideration the fact that milk has less water than most fruits and vegetables. Milk can be described as:
  • an oil-in-water emulsion with the fat globules dispersed in the continuous serum phase
  • a colloid suspension of casein micelles, globular proteins and lipoprotein partilcles
  • a solution of lactose, soluble proteins, minerals, vitamins other components.
Looking at milk under a microscope, at low magnification (5X) a uniform but turbid liquid is observed. At 500X magnification, spherical droplets of fat, known as fat globules, can be seen. At even higher magnification (50,000X), the casein micelles can be observed. The main structural components of milk, fat globules and casein micelles, will be examined in more detail later.

Milk Lipids - Chemical Properties
The fat content of milk is of economic importance because milk is sold on the basis of fat. Milk fatty acids originate either from microbial activity in the rumen, and transported to the secretory cells via the blood and lymph, or from synthesis in the secretory cells. The main milk lipids are a class called triglycerides which are comprised of a glycerol backbone binding up to three different fatty acids. The fatty acids are composed of a hydrocarbon chain and a carboxyl group. The major fatty acids found in milk are: 

Long chain
  • C14 - myristic 11%
  • C16 - palmitic 26%
  • C18 - stearic 10%
  • C18:1 - oleic 20%
Short chain (11%)
  • C4 - butyric*
  • C6 - caproic
  • C8 - caprylic
  • C10 - capric
* butyric fatty acid is specific for milk fat of ruminant animals and is resposible for the rancid flavour when it is cleaved from glycerol by lipase action. 

Saturated fatty acids (no double bonds), such as myristic, palmitic, and stearic make up two thirds of milk fatty acids. Oleic acid is the most abundant unsaturated fatty acid in milk with one double bond. While the cis form of geometric isomer is the most common found in nature, approximately 5% of all unsaturated bonds are in the trans position as a result of rumen hydrogenation.


Triglycerides account for 98.3% of milkfat. The distribution of fatty acids on the triglyceride chain, while there are hundreds of different combinations, is not random. The fatty acid pattern is important when determining the physical properties of the lipids. In general, the SN1 position binds mostly longer carbon length fatty acids, and the SN3 position binds mostly shorter carbon length and unsaturated fatty acids. For example:
  • C4 - 97% in SN3
  • C6 - 84% in SN3
  • C18 - 58% in SN1
The small amounts of mono- , diglycerides, and free fatty acids in fresh milk may be a product of early lipolysis or simply incomplete synthesis. Other classes of lipids include phospholipids (0.8%) which are mainly associated with the fat globule membrane, and cholesterol (0.3%) which is mostly located in the fat globule core.
Milk Lipids - Physical Properties
The physical properties of milkfat can be summerized as follows:
  • density at 20° C is 915 kg m(-3)*
  • refractive index (589 nm) is 1.462 which decreases with increasing temperature
  • solubility of water in fat is 0.14% (w/w) at 20° C and increases with increasing temperature
  • thermal conductivity is about 0.17 J m(-1) s(-1) K(-1) at 20° C
  • specific heat at 40° C is about 2.1kJ kg(-1) K(-1)
  • electrical conductivity is <10(-12) ohm(-1) cm(-1)
  • dielectric constant is about 3.1
*the brackets around numbers denote superscript

At room temperature, the lipids are solid, therefore, are correctly referred to as "fat" as opposed to "oil" which is liquid at room temperature. The melting points of individual triglycerides ranges from -75° C for tributyric glycerol to 72° C for tristearin. However, the final melting point of milkfat is at 37° C because higher melting triglycerides dissolve in the liquid fat. This temperature is significant because 37° C is the body temperature of the cow and the milk would need to be liquid at this temperature. The melting curves of milkfat are complicated by the diverse lipid composition:
  • trans unsaturation increases melting points
  • odd-numbered and branched chains decrease melting points
Crystallization of milkfat largely determines the physical stability of the fat globule and the consistency of high-fat dairy products, but crystal behaviour is also complicated by the wide range of different triglycerides. There are four forms that milkfat crystals can occur in; alpha, ß , ß ' 1, and ß ' 2, however, the alpha form is the least stable and is rarely observed in slowly cooled fat.
Milkfat Structure - Fat Globules
More than 95% of the total milk lipid is in the form of a globule ranging in size from 0.1 to 15 um in diameter. These liquid fat droplets are covered by a thin membrane, 8 to 10 nm in thickness, whose properties are completely different from both milkfat and plasma. The native fat globule membrane (FGM) is comprised of apical plasma membrane of the secretory cell which continually envelopes the lipid droplets as they pass into the lumen. The major components of the native FGM, therefore, is protein and phospholipids. The phospholipids are involved in the oxidation of milk. There may be some rearrangement of the membrane after release into the lumen as amphiphilic substances from the plasma adsorb onto the fat globule and parts of the membrane dissolve into either the globule core or the serum. The FGM decreases the lipid-serum interface to very low values, 1 to 2.5 mN/m, preventing the globules from immediate flocculation and coalescence, as well as protecting them from enzymatic action. 

It is well known that if raw milk or cream is left to stand, it will separate. Stokes' Law predicts that fat globules will cream due to the differences in densities between the fat and plasma phases of milk. However, in cold raw milk, creaming takes place faster than is predicted from this fact alone. IgM, an immunoglobulin in milk, forms a complex with lipoproteins. This complex, known as cryoglobulin precipitates onto the fat globules and causes flocculation. This is known as cold agglutination. As fat globules cluster, the speed of rising increases and sweeps up the smaller globules with them. The cream layer forms very rapidly, within 20 to 30 min., in cold milk. 

Homogenization of milk prevents this creaming by decreasing the diameter and size distribution of the fat globules, causing the speed of rise to be similar for the majority of globules. As well, homogenization causes the formation of a recombined membrane which is much similar in density to the continuous phase.
Recombined membranes are very different than native FGM. Processing steps such as homogenization, decreases the average diameter of fat globule and significantly increases the surface area. Some of the native FGM will remain adsorbed but there is no longer enough of it to cover all of the newly created surface area. Immediately after disruption of the fat globule, the surface tension raises to a high level of 15 mN/m and amphiphilic molecules in the plasma quickly adsorb to the lipid droplet to lower this value. The adsorbed layers consist mainly of serum proteins and casein micelles.

Retrieved from : Dairy Chemistry and Physics of Milk

PAGE 1 OF 3 :  PAGE  1 - 2 - 3

No comments:

Post a Comment